高校数学A
高校数学A
5分で解ける!倍数の個数1(かつ・または)に関する問題

0
Movie size

5分で解ける!倍数の個数1(かつ・または)に関する問題

0

子どもの勉強から大人の学び直しまで
ハイクオリティーな授業が見放題

カンタン登録1分

この動画の問題と解説

練習
一緒に解いてみよう

高校数学A 場合の数と確率4 練習

解説
これでわかる!

練習の解説授業

lecturer_avatar

自然数は、正の整数のことだね。100以下の自然数について、3の倍数または5の倍数の個数を求めよう。「かつ」や「または」などの表現が出る問題では、次のポイントのような集合のイメージを思い浮かべられるようにしておくといいね。

POINT
高校数学A 場合の数と確率4 ポイント

n(A∪B)=n(A)+n(B)-n(A∩B)

高校数学A 場合の数と確率4 練習

lecturer_avatar

3の倍数 または 5の倍数の個数を求めよう。
「または」 という言葉が出てきたら 「和集合」 を考えるよ。

lecturer_avatar

和集合の要素の個数は、
n(A∪B)=n(A)+n(B)-n(A∩B)
という計算が使えたね。
今回の問題に合わせて書くと、
n(3の倍数∩5の倍数)
n(3の倍数)+n(5の倍数)-n(3の倍数∩5の倍数)

lecturer_avatar

つまり、
n(3の倍数)
n(5の倍数)
n(3の倍数∩5の倍数)
をそれぞれ求めればいいわけだね。

n(3の倍数)とn(5の倍数)は?

lecturer_avatar

100以下の自然数で考えると
3の倍数は、3,6,9,12,15……99
99=3×33だから、 n(3の倍数)=33(個) だね。

lecturer_avatar

同じように、
5の倍数は、5,10,15,20,25……100
100=5×20だから、 n(5の倍数)=20(個) だね。

n(3の倍数)かつn(5の倍数)は?

lecturer_avatar

「3の倍数かつ5の倍数」はどうなるだろう。 3の倍数でもあり、5の倍数でもあるという条件を満たすのは、15の倍数 だね。

lecturer_avatar

15の倍数は、15,30,40……90
90=15×6だから、15の倍数、すなわち n(3の倍数かつ5の倍数)=6(個) だね。

lecturer_avatar

したがって、
n(3の倍数∩5の倍数)
n(3の倍数)+n(5の倍数)-n(3の倍数∩5の倍数)
=33+20-6
=47
だね。

答え
高校数学A 場合の数と確率4 練習の答え
倍数の個数1(かつ・または)
0
友達にシェアしよう!
Logo black
Register description
  • すべての授業の「要点まとめノート」「問題・解答」をPDF無料ダウンロードできる
  • 学校で使っている教科書にあわせて勉強できる
  • わからないところを質問できる

      会員登録をクリックまたはタップすると、利用規約・プライバシーポリシーに同意したものとみなします。

      場合の数と確率の問題
      高校数学Aの問題

      この授業のポイント・問題を確認しよう

      場合の数と確率

      Logo black
      Register description

          会員登録をクリックまたはタップすると、利用規約・プライバシーポリシーに同意したものとみなします。

          場合の数

          Logo black
          Register description

              会員登録をクリックまたはタップすると、利用規約・プライバシーポリシーに同意したものとみなします。

              高校数学A