高校数学Ⅲ

高校数学Ⅲ
5分で解ける!分数関数の積分(1)に関する問題

4
Movie size

5分で解ける!分数関数の積分(1)に関する問題

4

子どもの勉強から大人の学び直しまで
ハイクオリティーな授業が見放題

カンタン登録1分

この動画の問題と解説

問題

一緒に解いてみよう
分数関数の積分(1)

積分法とその応用17 問題

解説

これでわかる!
問題の解説授業

分数関数の積分公式が使えない!?

lecturer_avatar

(x2+3x+4)/(x+1)を不定積分する問題です。分数関数の積分ですね。分数関数については,2パターンの積分公式を学習しました。これまで紹介した①~⑧の積分公式のうちの②と⑧です。

分数関数の積分公式
積分法とその応用2 ポイント 下の2行分

積分法とその応用6 ポイント 下の2行分
lecturer_avatar

しかし,今回の問題の(x2+3x+4)/(x+1)は,②,⑧の公式ではうまく積分できません。

公式が使えるパターンに式変形する!

積分法とその応用17 問題

lecturer_avatar

(x2+3x+4)/(x+1)を積分できるようにするには,うまく式変形する必要があります。

lecturer_avatar

この問題では,分母が1次式,分子が2次式になっていることに注目しましょう。分母のほうが次数が低いので,割り算ができます。(分子)÷(分母)の割り算をすることで,次のように変形できます。

積分法とその応用17 問題 答え1~4行目まで

(x+2)の積分と,2/(x+1)の積分

lecturer_avatar

(x2+3x+4)/(x+1)は,
(x+2)+2/(x+1)に分解 できましたね。

lecturer_avatar

(x+2) の積分は,
∫(x+2)dx=(1/2)x2+2x
2/(x+1) の積分は,1/xの積分公式を使って,
∫{2/(x+1)}dx=2log|x+1|
最後に積分定数Cを加えれば答えになりますね。

答え
積分法とその応用17 問題 答え

分数関数の積分解法①

lecturer_avatar

一見,分数関数の積分公式が使えないときの解法①は, (分子)÷(分母)の割り算 をしてみることです。分母が1次式,分子が2次式のように,分母の方が次数が低いとき,この解法がうまくいくことがあります。

POINT
積分法とその応用17 ポイント
分数関数の積分(1)
4
友達にシェアしよう!
Logo black
Register description
  • すべての授業の「要点まとめノート」「問題・解答」をPDF無料ダウンロードできる
  • 学校で使っている教科書にあわせて勉強できる
  • わからないところを質問できる

      会員登録をクリックまたはタップすると、利用規約・プライバシーポリシーに同意したものとみなします。
      メール受信に関するお問い合わせが増えております。メールが届かない場合は
      こちらをご覧ください。

      積分法とその応用の問題

      この授業のポイント・問題を確認しよう

      積分法とその応用

      Logo black
      Register description

          会員登録をクリックまたはタップすると、利用規約・プライバシーポリシーに同意したものとみなします。
          メール受信に関するお問い合わせが増えております。メールが届かない場合は
          こちらをご覧ください。

          不定積分

          Logo black
          Register description

              会員登録をクリックまたはタップすると、利用規約・プライバシーポリシーに同意したものとみなします。
              メール受信に関するお問い合わせが増えております。メールが届かない場合は
              こちらをご覧ください。

              高校数学Ⅲ