高校数学Ⅲ

高校数学Ⅲ
5分で解ける!置換積分法(1)に関する問題

77

5分で解ける!置換積分法(1)に関する問題

77
トライ式高等学院通信制高校トライ式高等学院通信制高校

この動画の問題と解説

問題

一緒に解いてみよう
置換積分法(1)

積分法とその応用12 問題

解説

これでわかる!
問題の解説授業
lecturer_avatar

今回から計5回の授業で,置換積分法について解説しましょう。第1回目の授業では,x√(1-x)の不定積分を扱います。

置換積分法とは?

lecturer_avatar

置換積分法とは,xを別の文字に置き換えて積分する方法のことを言います。

lecturer_avatar

例えば,今回の問題x√(1-x)の積分を考えてみましょう。xで積分しようと思うと,xと√(1-x)の積になっている上,√(1-x)は合成関数になっているので,とても積分しにくいですね。そこで,ルートの中身をシンプルな式に置き換えて積分するのが置換積分法です。

t=1-xとおくと……

積分法とその応用12 問題

lecturer_avatar

ルートの中身をシンプルな式に置き換えて積分したいので,1-xをtに置きかえると,
t=1-x
ですね。この式からx=1-tでもあるので,
∫x√(1-x)dx
=∫(1-t)√(t)dx
=∫(1-t)t(1/2)dx
= ∫{t(1/2)-t(3/2)}dx
積の形を解消して,tの(1/2)乗と,tの(3/2)乗の項だけで表せました。

dxをdtで表すと……

lecturer_avatar

∫{t(1/2)-t(3/2)}dx は,t(1/2)-t(3/2)xで不定積分するという意味です。t(1/2)-t(3/2)をtで積分するには,dxをdtに書き換える必要がありますね。いま,t=1-xより,両辺をxで微分して,
(d/dx)t=-1
つまり,dx=-dtとなるわけです。これを ∫{t(1/2)-t(3/2)}dx に代入して,
∫{t(1/2)-t(3/2)}dx=-∫{t(1/2)-t(3/2)}dt
tで積分できる式に変形できましたね。

tで積分した後,xに戻す

lecturer_avatar

-∫{t(1/2)-t(3/2)}dt において,t(1/2)の積分は(2/3)t(3/2)です。また,t(3/2)の積分は(2/5)t(5/2)です。積分定数Cをつけて,

積分法とその応用12 問題 答え 1~7行目

lecturer_avatar

となりますね。ここで,tをxの式に戻すことを忘れないでください。tはあくまで積分しやすいように置きかえた文字なので,問題で与えられた文字xに戻す必要があります。

答え
積分法とその応用12 問題2 答え

ルートの中身をtと置いて積分

lecturer_avatar

置換積分法の解法はつかめましたか? このように,ルートがある式を積分するときは, ルートの中身をtと置いて積分 するとうまくいくことが多いです。解法の手順をしっかり覚えておきましょう。

POINT
積分法とその応用12 ポイント
トライ式高等学院通信制高校
置換積分法(1)
77
友達にシェアしよう!
トライ式高等学院通信制高校

積分法とその応用の問題