高校数学Ⅰ
高校数学Ⅰ
5分で解ける!2次不等式の解き方3【解の公式の利用】に関する問題

0
Movie size

5分で解ける!2次不等式の解き方3【解の公式の利用】に関する問題

0

子どもの勉強から大人の学び直しまで
ハイクオリティーな授業が見放題

カンタン登録1分

この動画の問題と解説

例題
一緒に解いてみよう

高校数学Ⅰ 2次関数42 例題

解説
これでわかる!

例題の解説授業

lecturer_avatar

「2次不等式」 の問題だね。
ポイントは以下の通りだよ。左辺を因数分解できない場合は、 解の公式 を使って、(x-α)(x-β)となるα、βの値を求めよう。

POINT
高校数学Ⅰ 2次関数42 ポイント

因数分解して{x-(2-√2)}{x-(2+√2)}>0

lecturer_avatar

(左辺)=x2-4x+2 はうまく因数分解できないね。

lecturer_avatar

そこでx2-4x+2=0として、
解の公式を使うと、x=2±√2 となるよ。

lecturer_avatar

よって、
2-4x+2>0
{x-(2-√2)}{x-(2+√2)}>0  
と変形できるよ。

lecturer_avatar

あとは、y={x-(2-√2)}{x-(2+√2)}のグラフがプラスとなるxの値の範囲を考えよう。

高校数学Ⅰ 2次関数42 例題の答えのグラフ
lecturer_avatar

上図のようにかけたかな? この不等式の解のイメージは、「2-√2と2+√2の 外側 」だね。

答え
高校数学Ⅰ 2次関数42 例題の答え
Imagawa
この授業の先生

今川 和哉 先生

どんなに数学がニガテな生徒でも「これだけ身につければ解ける」という超重要ポイントを、 中学生が覚えやすいフレーズとビジュアルで整理。難解に思える高校数学も、優しく丁寧な語り口で指導。

2次不等式の解き方3【解の公式の利用】
0
友達にシェアしよう!
Logo black
Register description
  • すべての授業の「要点まとめノート」「問題・解答」をPDF無料ダウンロードできる
  • 学校で使っている教科書にあわせて勉強できる
  • わからないところを質問できる

      会員登録をクリックまたはタップすると、利用規約・プライバシーポリシーに同意したものとみなします。

      高校数学Ⅰの問題

      この授業のポイント・問題を確認しよう

      2次関数

      Logo black
      Register description

          会員登録をクリックまたはタップすると、利用規約・プライバシーポリシーに同意したものとみなします。

          2次関数と方程式・不等式

          Logo black
          Register description

              会員登録をクリックまたはタップすると、利用規約・プライバシーポリシーに同意したものとみなします。

              高校数学Ⅰ