高校数学Ⅰ
高校数学Ⅰ
5分で解ける!逆・裏とは?に関する問題

0
Movie size

5分で解ける!逆・裏とは?に関する問題

0

子どもの勉強から大人の学び直しまで
ハイクオリティーな授業が見放題

カンタン登録1分

この動画の問題と解説

例題
一緒に解いてみよう

高校数学Ⅰ 数と式77 例題

解説
これでわかる!

例題の解説授業

lecturer_avatar

「命題の逆と裏」 の問題を解こう。
ポイントは以下の通りだよ。 「逆」「矢印が逆」「裏」 は、裏返しだから 「否定」 の形だね。

POINT
高校数学Ⅰ 数と式77 ポイント

「逆」は「矢印を逆」 「裏」は「それぞれを否定」

高校数学Ⅰ 数と式77 例題(1)

lecturer_avatar

まずは「逆」を考えよう。単純に 矢印を逆 にするよ。
「a2=4⇒a=2」

lecturer_avatar

では「a2=4⇒a=2」は正しいと言えるかな?
2=4を解くと、a=±2だよ。
a=-2が反例 になるから、 反例が1つでもあれば命題は偽 となるね。

lecturer_avatar

次に「裏」を考えよう。 それぞれを「否定」の形に するんだね。
「a≠2⇒a2≠4」

lecturer_avatar

では「a≠2⇒a2≠4」は正しいと言えるかな?
イメージしづらいときは、まず 反例があるか考えよう

lecturer_avatar

a=-2 のときは、どうなるかな?
a=-2は、仮定「a≠2」を満たしているね。ここで、結論「a2≠4」を考えると、 2=(-2)2=4  で満たしていない。
a=-2が反例 になるから、 反例が1つでもあれば命題は偽 となるね。

(1)の答え
高校数学Ⅰ 数と式77 例題(1)の答え

高校数学Ⅰ 数と式77 例題(2)

lecturer_avatar

まずは「逆」を考えよう。
「nは9の倍数⇒nは3の倍数」

lecturer_avatar

では「nは9の倍数⇒nは3の倍数」は正しいと言えるかな?
「nは9の倍数」というのは、 n=9k(kは整数) と表せるよね。
n=9k= 3×(3k)  と変形してやると、これは3の倍数になっていることが言えるよ。

lecturer_avatar

次に「裏」を考えよう。
「nは3の倍数でない⇒nは9の倍数でない」
9の倍数 って、 常に3の倍数 でもあるよね。
つまり、そもそも3の倍数でないと、9の倍数にはならないから正しいと言えるんだ。

(2)の答え
高校数学Ⅰ 数と式77 例題(2)の答え
Imagawa
この授業の先生

今川 和哉 先生

どんなに数学がニガテな生徒でも「これだけ身につければ解ける」という超重要ポイントを、 中学生が覚えやすいフレーズとビジュアルで整理。難解に思える高校数学も、優しく丁寧な語り口で指導。

逆・裏とは?
0
友達にシェアしよう!
Logo black
Register description
  • すべての授業の「要点まとめノート」「問題・解答」をPDF無料ダウンロードできる
  • 学校で使っている教科書にあわせて勉強できる
  • わからないところを質問できる

      会員登録をクリックまたはタップすると、利用規約・プライバシーポリシーに同意したものとみなします。

      高校数学Ⅰの問題

      この授業のポイント・問題を確認しよう

      数と式

      Logo black
      Register description

          会員登録をクリックまたはタップすると、利用規約・プライバシーポリシーに同意したものとみなします。

          集合と命題

          Logo black
          Register description

              会員登録をクリックまたはタップすると、利用規約・プライバシーポリシーに同意したものとみなします。

              高校数学Ⅰ