高校数学Ⅲ

高校数学Ⅲ
5分で解ける!双曲線のグラフ(2)に関する問題

6

5分で解ける!双曲線のグラフ(2)に関する問題

6

子どもの勉強から大人の学び直しまで
ハイクオリティーな授業が見放題

カンタン登録1分

この動画の問題と解説

問題

一緒に解いてみよう

式と曲線11 問題2

解説

これでわかる!
問題の解説授業
lecturer_avatar

双曲線の方程式を手掛かりにして,グラフを描き,焦点の座標を求める問題です。方程式が (x2/a2)-(y2/b2)=-1 の形であるとき,y2の係数がマイナス方程式の右辺が「=-1」 であることから,上下に分かれた双曲線がイメージできますね。グラフを描くときに必要となる漸近線は,y=±(b/a)xで求められました。

POINT
式と曲線11 ポイント
lecturer_avatar

双曲線は,漸近線y=±(b/a)xにどんどん近づくように描きましょう。また, 焦点の座標(0,±c) は, c2=a2+b2 の関係式から求められます。

a,bの値から「漸近線」と「頂点」を求める

式と曲線11 問題2

lecturer_avatar

双曲線:(x2/16)-(y2/25)=-1は,y2の係数がマイナス方程式の右辺が「=-1」 であることから,上下に分かれた双曲線がイメージできますね。

lecturer_avatar

(x2/a2)-(y2/b2)=1の式におけるa,bの値は,a2=16,b2=25からa=4,b=5とわかります。これらを漸近線y=±(b/a)xに代入すると,漸近線はy=±(5/4)xとなりますね。また, 頂点(0,±b) より2つの 頂点は(0,±5) です。

lecturer_avatar

これらの情報をもとにグラフを描いていきましょう。xy平面において, 点(0,±5) を打ち込み,y=±(5/4)xの直線を記します。 頂点を(0,±5) とする上下に分かれた双曲線を,漸近線y=±(5/4)xに近づけるように描くと答えになります。

式と曲線11 問題2 てがき図のみ

「c2=a2+b2」から焦点を求める

lecturer_avatar

最後に焦点の座標を求めましょう。双曲線:(x2/a2)-(y2/b2)=-1において,焦点F(0,c),F'(0,-c)とすると, c2=a2+b2 が成り立ちました。

lecturer_avatar

a=4,b=5なので,
c2=42+52=41
となり,c=√41です。 焦点F(0,√41),F'(0,-√41) と求められますね。

答え
式と曲線11 問題2 解答 図も含むすべて
双曲線のグラフ(2)
6
友達にシェアしよう!
  • 学校で使っている教科書にあわせて勉強できる

      会員登録をクリックまたはタップすると、利用規約・プライバシーポリシーに同意したものとみなします。
      ご利用のメールサービスで @try-it.jp からのメールの受信を許可して下さい。詳しくは
      こちらをご覧ください。

      この授業のポイント・問題を確認しよう

      式と曲線

          会員登録をクリックまたはタップすると、利用規約・プライバシーポリシーに同意したものとみなします。
          ご利用のメールサービスで @try-it.jp からのメールの受信を許可して下さい。詳しくは
          こちらをご覧ください。

          2次曲線

              会員登録をクリックまたはタップすると、利用規約・プライバシーポリシーに同意したものとみなします。
              ご利用のメールサービスで @try-it.jp からのメールの受信を許可して下さい。詳しくは
              こちらをご覧ください。

              高校数学Ⅲ