高校数学Ⅱ
高校数学Ⅱ
5分で解ける!絶対値f(x)の定積分の値は面積に関する問題

0
Movie size

5分で解ける!絶対値f(x)の定積分の値は面積に関する問題

0

子どもの勉強から大人の学び直しまで
ハイクオリティーな授業が見放題

カンタン登録1分

この動画の問題と解説

練習
一緒に解いてみよう

高校数学Ⅱ 微分法と積分30 練習

解説
これでわかる!

練習の解説授業

lecturer_avatar

絶対値がついた式の定積分を求める問題です。 y=|f(x)|のグラフの面積 を考えるのがポイントでした。

POINT
高校数学Ⅱ 微分法と積分法30 ポイント

y=x2-1のグラフをx軸で折り返す

高校数学Ⅱ 微分法と積分法30 練習

lecturer_avatar

絶対値がついた式の定積分 は、 面積 を求めればよかったですね。

lecturer_avatar

ラフ図をかいて、 y=|x2-1|とx軸で囲まれる図形 を確認しましょう。y=|x2-1|のグラフは、y=x2-1のグラフをx軸で折り返したものになります。

高校数学Ⅱ 微分法と積分法30 練習 答えの図
lecturer_avatar

放物線とx軸との交点の座標は、y=x2-1=(x+1)(x-1)より、x=-1とx=1となっています。積分区間はx=-1からx=2ですね。

2つの面積を合計すればOK

lecturer_avatar

求める値は、図における斜線部の面積です。

高校数学Ⅱ 微分法と積分法30 練習 答えの図
lecturer_avatar

x=-1からx=1の区間の面積をS1、x=1からx=2の区間の面積をS2として計算していきましょう。

lecturer_avatar

S1は、放物線y=-(x2-1)とx軸で囲まれる図形の面積。これは、公式|a|/6(β-α)3が使えるパターンですね。交点は-1と1なので、次のように求めることができます。

高校数学Ⅱ 微分法と積分法30 練習 答えの図と3行目まで
lecturer_avatar

S2は、放物線y=x2-1とx軸で囲まれる図形の面積。「上のグラフ(y=x2-1)」-「下のグラフ(y=0)」の定積分を考え、次のように求めることができます。

高校数学Ⅱ 微分法と積分法30 練習 4行目~7行目まで
lecturer_avatar

あとは、S1+S2を計算すれば、答えが出てきますね。

答え
高校数学Ⅱ 微分法と積分法30 練習 答え
絶対値f(x)の定積分の値は面積
0
友達にシェアしよう!
Logo black
Register description
  • すべての授業の「要点まとめノート」「問題・解答」をPDF無料ダウンロードできる
  • 学校で使っている教科書にあわせて勉強できる
  • わからないところを質問できる

      会員登録をクリックまたはタップすると、利用規約・プライバシーポリシーに同意したものとみなします。