高校数学A

高校数学A
5分で解ける!「和事象の確率」の求め方2(ダブリあり)に関する問題

20

5分で解ける!「和事象の確率」の求め方2(ダブリあり)に関する問題

20
トライ式高等学院通信制高校トライ式高等学院通信制高校

この動画の問題と解説

練習

一緒に解いてみよう

高校数学A 場合の数と確率42 練習

解説

これでわかる!
練習の解説授業
lecturer_avatar

「順番を決めて1列に並ぶ」ので、「順列」の確率だね。「P(A)=左端が女子の確率」「P(B)=右端が女子の確率」としよう。求めたいのは、「P(A∪B)=左端 または 右端が女子の確率」だね。 和事象の確率 だ。

lecturer_avatar

この問題では、「左端が女子」でかつ「右端が女子」が同時に起こる可能性があるのがわかるかな? 男女が1列に並ぶとき、「両端が女子」になるケースってあるよね? つまり、P(A)とP(B)には ダブリがある んだ!単純に、 P(A∪B)=P(A)+P(B) で計算してはいけないパターンだよ。

POINT
高校数学A 場合の数と確率42 ポイント
lecturer_avatar

P(A∪B)を求めるには、P(A)+P(B)から「P(A∩B)=事象Aかつ事象Bが起こる確率」を引き算する のがポイントだったね。

ダブっている部分をひき算!

高校数学A 場合の数と確率42 練習

lecturer_avatar

「左端 または 右端が女子である」確率だから、まずは「左端が女子」の確率と、「右端が女子」の確率を足し算することを考えよう。ただし、「左端 かつ 右端が女子」という場合があるから、 この確率をひいてやる 必要があるよ。

高校数学A 場合の数と確率42 練習
lecturer_avatar

式の全体像がわかったら、それぞれの確率を求めていこう。

lecturer_avatar

P(A)=左端が女子の確率
左端の女子の決め方が3通り、残った4人の並べ方が4!通りだね。したがって、 P(A)=3×4!/5!

lecturer_avatar

P(B)=右端が女子の確率
右端の女子の決め方が3通り、残った4人の並べ方が4!通りだね。したがって、 P(A)=3×4!/5!

lecturer_avatar

P(A∩B)=両端が女子の確率
右端の女子の決め方が3通り、左端の女子の決め方が2通り。残った3人の並べ方が3!通りだね。したがって、 P(A∩B)=3×2×3!/5!

lecturer_avatar

あとは、これらを P(A∪B)=P(A)+P(B)-P(A∩B) に代入すれば答えだね。

答え
高校数学A 場合の数と確率42 練習の答え
トライ式高等学院通信制高校
「和事象の確率」の求め方2(ダブリあり)
20
友達にシェアしよう!
トライ式高等学院通信制高校

場合の数と確率の問題

高校数学Aの問題

この授業のポイント・問題を確認しよう

場合の数と確率

      会員登録をクリックまたはタップすると、利用規約・プライバシーポリシーに同意したものとみなします。
      ご利用のメールサービスで @try-it.jp からのメールの受信を許可して下さい。詳しくは
      こちらをご覧ください。

      確率

      トライ式高等学院通信制高校トライ式高等学院通信制高校

      高校数学A