高校数学Ⅰ
高校数学Ⅰ
5分で解ける!「最小値(最大値)」をヒントに放物線の式を決める2に関する問題

1
Movie size

5分で解ける!「最小値(最大値)」をヒントに放物線の式を決める2に関する問題

1

子どもの勉強から大人の学び直しまで
ハイクオリティーな授業が見放題

カンタン登録1分

この動画の問題と解説

例題
一緒に解いてみよう

高校数学Ⅰ 2次関数29 例題

解説
これでわかる!

例題の解説授業

lecturer_avatar

「『最小値』をヒントに放物線の式を決める」 問題だね。
ポイントは以下の通りだよ。基本に忠実に、グラフで考えよう。

POINT
高校数学Ⅰ 2次関数29 ポイント

最小値をとるときのxの値は?

lecturer_avatar

与えられた「y=x2-2x+c(-1≦x≦4)」という式では、この2次関数がどこで最小値をとるのかわかりにくいよね。

lecturer_avatar

式を平方完成すると、
y=(x-1)2-1+c
頂点(1,-1+c)で、下に凸な放物線だとわかったよ。

lecturer_avatar

範囲が -1≦x≦4 であることに注意して、 ここでラフ図をかいてみよう。

高校数学Ⅰ 2次関数29 例題の答え 左にある放物線
lecturer_avatar

図より、グラフはx=1のとき、最小値をとることがわかるね。
したがって
-1+c=-4
定数cの値が定まったよ。

答え
高校数学Ⅰ 2次関数29 例題の答え
「最小値(最大値)」をヒントに放物線の式を決める2
1
友達にシェアしよう!
Logo black
Register description
  • すべての授業の「要点まとめノート」「問題・解答」をPDF無料ダウンロードできる
  • 学校で使っている教科書にあわせて勉強できる
  • わからないところを質問できる

      会員登録をクリックまたはタップすると、利用規約・プライバシーポリシーに同意したものとみなします。

      高校数学Ⅰの問題

      この授業のポイント・問題を確認しよう

      2次関数

      Logo black
      Register description

          会員登録をクリックまたはタップすると、利用規約・プライバシーポリシーに同意したものとみなします。

          2次関数の最大・最小

          Logo black
          Register description

              会員登録をクリックまたはタップすると、利用規約・プライバシーポリシーに同意したものとみなします。

              高校数学Ⅰ