高校数学Ⅱ
高校数学Ⅱ
5分で解ける!nCr と2項定理に関する問題

1
Movie size

5分で解ける!nCr と2項定理に関する問題

1

子どもの勉強から大人の学び直しまで
ハイクオリティーな授業が見放題

カンタン登録1分

この動画の問題と解説

例題
一緒に解いてみよう

高校数学Ⅱ 式と証明3 例題

解説
これでわかる!

例題の解説授業

lecturer_avatar

(x+1)4を解く問題です。
(○+△)nは2項定理を使って解くのでしたね。公式を振り返ってみましょう。

POINT
高校数学Ⅱ 式と証明3 ポイント
lecturer_avatar

2項定理はnCrの入り方と文字の次数の順番に気をつけるんでしたね!

まずは係数になるnCrを計算しよう

高校数学Ⅱ 式と証明3 例題1

lecturer_avatar

(x+1)4を解く前に、展開したあとの係数になるnCrの計算を確認しておきましょう。
nCr=nPr/r!=n(n-1)(n-2)(n-3)・・・(n-r+1)/r(r-1)・・・3・2・1 でしたね。
またこのほか、 便利な公式としてnCr=nCn-r,nC1=n,nC0=1,nCn=1がある のであわせて覚えておくと便利です。
これらの公式を使って計算すると、答えは次のようになりますね。

答え
高校数学Ⅱ 式と証明3 例題1 答え

xと1の右肩の数字に注目しよう

高校数学Ⅱ 式と証明1 例題2

lecturer_avatar

まずは項の係数に着目しましょう。
カッコの次数は4なので、係数は左から4C0,4C1,4C2,4C3,4C4の順となります。それぞれどんな値になるかは(1)で計算しましたね。

lecturer_avatar

次はxと1の右肩の数字、つまり次数に注目しましょう。
xは左からxの4乗、3乗、2乗、1乗、0乗となりますね。
1に関しては、 次数の順番がxと逆になるので 、左から1の0乗、1乗、2乗、3乗、4乗となります。なお、1は何乗しても1ですね!
したがって(x+1)4の計算は次のようになります。

答え
高校数学Ⅱ 式と証明3 例題2 答え
Asami
この授業の先生

浅見 尚 先生

センター試験数学から難関大理系数学まで幅広い著書もあり、現在は私立高等学校でも 受験数学を指導しており、大学受験数学のスペシャリストです。

nCr と2項定理
1
友達にシェアしよう!
Logo black
Register description
  • すべての授業の「要点まとめノート」「問題・解答」をPDF無料ダウンロードできる
  • 学校で使っている教科書にあわせて勉強できる
  • わからないところを質問できる

      会員登録をクリックまたはタップすると、利用規約・プライバシーポリシーに同意したものとみなします。

      この授業のポイント・問題を確認しよう

      式と証明

      Logo black
      Register description

          会員登録をクリックまたはタップすると、利用規約・プライバシーポリシーに同意したものとみなします。

          式と計算

          Logo black
          Register description

              会員登録をクリックまたはタップすると、利用規約・プライバシーポリシーに同意したものとみなします。

              高校数学Ⅱ