高校数学Ⅰ

高校数学Ⅰ
5分で解ける!データの範囲に関する問題

0
Movie size

5分で解ける!データの範囲に関する問題

0

子どもの勉強から大人の学び直しまで
ハイクオリティーな授業が見放題

カンタン登録1分

この動画の問題と解説

例題

一緒に解いてみよう

高校数学Ⅰ データ分析5 例題

解説

これでわかる!
例題の解説授業
lecturer_avatar

「データの範囲」と「散らばりの度合い」を求める問題だね。最大値と最小値に注目して「データの範囲」を求め、「散らばりの度合い」を比べてみよう。

POINT
高校数学Ⅰ データ分析5 ポイント

(最大値)-(最小値)=(データの範囲)

高校数学Ⅰ データ分析5 例題

lecturer_avatar

まずは、男子と女子それぞれの「データの範囲」から求めていこう。 (最大値)-(最小値)で「データの範囲」を求めることができる んだね。

lecturer_avatar

男子の最大値は34.3(m)
男子の最小値は21.9(m)
よって、 男子のデータの範囲 は、
34.3-21.9= 12.4(m)

lecturer_avatar

女子の最大値は19.8(m)
女子の最小値は12.3(m)
よって、 女子のデータの範囲 は、
19.8-12.3= 7.5(m)

データの範囲が大きいほど、散らばっている

lecturer_avatar

また「散らばりの度合い」は、データの値がどれだけ散らばっているか、を示すものだよ。データの範囲が大きければ大きいほど、最大値と最小値の差が大きくなり、 データの散らばりの度合いが大きい と表現するんだ。

lecturer_avatar

今回は、男子のデータの範囲が12.4(m)で、女子のデータの範囲が7.5(m)。男子のデータのほうが範囲が広く、6人のデータが散らばって存在していることがわかるね。

答え
高校数学Ⅰ データ分析5 例題 答え
データの範囲
0
友達にシェアしよう!
Logo black
Register description
  • すべての授業の「要点まとめノート」「問題・解答」をPDF無料ダウンロードできる
  • 学校で使っている教科書にあわせて勉強できる
  • わからないところを質問できる

      会員登録をクリックまたはタップすると、利用規約・プライバシーポリシーに同意したものとみなします。

      データ分析の問題

      高校数学Ⅰの問題

      この授業のポイント・問題を確認しよう

      データ分析

      Logo black
      Register description

          会員登録をクリックまたはタップすると、利用規約・プライバシーポリシーに同意したものとみなします。

          データの散らばりと相関

          Logo black
          Register description

              会員登録をクリックまたはタップすると、利用規約・プライバシーポリシーに同意したものとみなします。

              高校数学Ⅰ