高校物理

高校物理
5分で解ける!定積変化の吸収熱、内部エネルギーの一般式に関する問題

0
Movie size

5分で解ける!定積変化の吸収熱、内部エネルギーの一般式に関する問題

0

子どもの勉強から大人の学び直しまで
ハイクオリティーな授業が見放題

カンタン登録1分

この動画の問題と解説

練習

一緒に解いてみよう

熱力学17 練習2 全部

解説

これでわかる!
練習の解説授業
lecturer_avatar

単原子分子の理想気体について、圧力の変化から加えた熱量を求める問題です。 体積が一定 に保たれているので、 定積変化 ですね。

内部エネルギーU=(3/2)nRTを圧力Pと体積Vで表す

熱力学17 練習2 (1)の問題文

lecturer_avatar

圧力が2倍になるので、加熱後の圧力は2P0、体積V0に変化します。また、はじめの温度をT1、圧力が2倍になったときの温度をT2とおきます。

lecturer_avatar

はじめの気体の内部エネルギーを求めるには、単原子分子の内部エネルギーの式U=(3/2)nRTを使います。しかし、問題文にはモル数nも温度Tも与えられていません。したがって、モル数n、温度Tを圧力Pと体積Vで表すことを考えましょう。

lecturer_avatar

気体の状態方程式PV=nRTより、
P0V0=nRT1
これをU=(3/2)nRT1に代入すると、答えが求まります。

(1)の答え
熱力学17 練習2 (1)解答右側全て

式の中のnRTはPVで置き換える

熱力学17 練習2 (2)問題文

lecturer_avatar

(2)は、気体に与えた熱エネルギーを求める問題です。 定積変化 では、気体は外部に仕事をしません。つまり、与えた熱エネルギーは気体が吸収した熱エネルギーと等しくなります。

lecturer_avatar

内部エネルギーの増分を考え、
Qin=nCVΔT=(3/2)nRΔT
ここでΔT=T2-T1ですが、T2、T1の値はわかりませんね。(1)と同じように、 式の中のnRTはPVで置き換える ことを考えましょう。状態方程式より、
2P0V0=nRT2
を代入します。

(2)の答え
熱力学17 練習2 (2)解答全て
定積変化の吸収熱、内部エネルギーの一般式
0
友達にシェアしよう!
Logo black
Register description
  • すべての授業の「要点まとめノート」「問題・解答」をPDF無料ダウンロードできる
  • 学校で使っている教科書にあわせて勉強できる
  • わからないところを質問できる

      会員登録をクリックまたはタップすると、利用規約・プライバシーポリシーに同意したものとみなします。