高校数学Ⅱ

高校数学Ⅱ
5分で解ける!弧度法表示の三角関数(cosθ編)に関する問題

17

5分で解ける!弧度法表示の三角関数(cosθ編)に関する問題

17

子どもの勉強から大人の学び直しまで
ハイクオリティーな授業が見放題

カンタン登録1分

この動画の問題と解説

練習

一緒に解いてみよう

高校数学Ⅱ 三角関数5 練習

解説

これでわかる!
練習の解説授業
lecturer_avatar

弧度法を使ったcosの値を求める問題ですね。
ポイントは以下の通りですね。符号の変化に注意しましょう。

POINT
高校数学Ⅱ 三角関数5 ポイント

直角三角形で考えよう

高校数学Ⅱ 三角関数5 練習

lecturer_avatar

まずはθ=π/4,2π/3,5π/4,11π/6の時の点を取ってみましょう。
ただし、このままではイメージがしにくいので、度数法に直してあげると
π/4=45°,2π/3=120°,5π/4=225°,11π/6=330°となります。

lecturer_avatar

この位置にそれぞれ 半径を斜辺とする直角三角形 を作ってあげましょう。

高校数学Ⅱ 三角関数5 練習 図
lecturer_avatar

45°の時は 45°、45°、90°の直角三角形 ができます。
底辺:高さ:斜辺=1:1:√2 ですね。
cosπ/4の値は第1象限にあるので符号は プラス となり
x/r より1/√2

lecturer_avatar

120°の時は 60°,30°,90°の直角三角形が できます。
底辺:高さ:斜辺=1:√3:2
cos2π/3は第2象限にあるので符号は マイナス となり
x/r より-1/2

lecturer_avatar

225°の時は 45°、45°、90°の直角三角形 ができて
底辺:高さ:斜辺=1:1:√2
cos5π/4は第3象限にあるので符号は マイナス となり
x/r より-1/√2

lecturer_avatar

330°の時は 60°,30°,90°の直角三角形 ができ
底辺:高さ:斜辺=1:√3:2
cos11π/6は第4象限にあるので符号は プラス となり
x/r より√3/2

答え
高校数学Ⅱ 三角関数5 練習 答え
弧度法表示の三角関数(cosθ編)
17
友達にシェアしよう!
  • 学校で使っている教科書にあわせて勉強できる

      会員登録をクリックまたはタップすると、利用規約・プライバシーポリシーに同意したものとみなします。
      ご利用のメールサービスで @try-it.jp からのメールの受信を許可して下さい。詳しくは
      こちらをご覧ください。

      この授業のポイント・問題を確認しよう

      三角関数

          会員登録をクリックまたはタップすると、利用規約・プライバシーポリシーに同意したものとみなします。
          ご利用のメールサービスで @try-it.jp からのメールの受信を許可して下さい。詳しくは
          こちらをご覧ください。

          弧度法

              会員登録をクリックまたはタップすると、利用規約・プライバシーポリシーに同意したものとみなします。
              ご利用のメールサービスで @try-it.jp からのメールの受信を許可して下さい。詳しくは
              こちらをご覧ください。

              高校数学Ⅱ