高校数学Ⅱ
高校数学Ⅱ
5分で解ける!領域における最大・最小の求め方に関する問題

0
Movie size

5分で解ける!領域における最大・最小の求め方に関する問題

0

子どもの勉強から大人の学び直しまで
ハイクオリティーな授業が見放題

カンタン登録1分

この動画の問題と解説

練習
一緒に解いてみよう

高校数学Ⅱ 図形と方程式34 練習

解説
これでわかる!

練習の解説授業

lecturer_avatar

領域におけるx+yの最大値・最小値を求める問題ですね。
x+y=kとおいて、図形的に考えるのがポイントでした。

POINT
高校数学Ⅱ 図形と方程式34 ポイント

領域を求め、x+y=kとおこう

高校数学Ⅱ 図形と方程式34 練習

lecturer_avatar

x≦0,y≧0,y≦x+1の表す領域をDとしましょう。そして求めたい式 x+y=k とおきます。

lecturer_avatar

まずは領域Dを求めると、次のようになりますね。

高校数学Ⅱ 図形と方程式34 練習 図 右下がりの直線2本だけ消す
lecturer_avatar

この領域Dを通過する 直線y=-x+k の範囲を考えましょう。
すると、kはy切片なので、以下の図より -1≦k≦1 で、直線はDを通過しますね。

高校数学Ⅱ 図形と方程式34 練習 図
lecturer_avatar

よって、kの最大値は1、最小値は-1と求まります。
これはすなわち、x+yはx=0,y=1の時最大値をとり、x=-1,y=0の時最小値をとるとも言えますね!

答え
高校数学Ⅱ 図形と方程式34 練習 答え
Asami
この授業の先生

浅見 尚 先生

センター試験数学から難関大理系数学まで幅広い著書もあり、現在は私立高等学校でも 受験数学を指導しており、大学受験数学のスペシャリストです。

領域における最大・最小の求め方
0
友達にシェアしよう!
Logo black
Register description
  • すべての授業の「要点まとめノート」「問題・解答」をPDF無料ダウンロードできる
  • 学校で使っている教科書にあわせて勉強できる
  • わからないところを質問できる

      会員登録をクリックまたはタップすると、利用規約・プライバシーポリシーに同意したものとみなします。

      図形と方程式の問題

      この授業のポイント・問題を確認しよう

      図形と方程式

      Logo black
      Register description

          会員登録をクリックまたはタップすると、利用規約・プライバシーポリシーに同意したものとみなします。

          軌跡と領域

          Logo black
          Register description

              会員登録をクリックまたはタップすると、利用規約・プライバシーポリシーに同意したものとみなします。

              高校数学Ⅱ