高校数学Ⅱ
高校数学Ⅱ
5分でわかる!極値をもつ3次関数のグラフと最大・最小

6
Movie size

5分でわかる!極値をもつ3次関数のグラフと最大・最小

6

子どもの勉強から大人の学び直しまで
ハイクオリティーな授業が見放題

カンタン登録1分

この動画の要点まとめ

ポイント

極値をもつ3次関数のグラフと最大・最小

高校数学Ⅱ 微分法と積分法14 ポイント

これでわかる!

ポイントの解説授業

lecturer_avatar

今回のテーマは「極値をもつ3次関数のグラフと最大・最小」です。

lecturer_avatar

3次関数の最大値・最小値を求めるには、 グラフを素早く書く 必要があります。増減表を毎回書いていると時間のロスが大きいですよね。極値をもつ3次関数のグラフをかくコツを伝授しましょう。

POINT
高校数学Ⅱ 微分法と積分法14 ポイント
lecturer_avatar

ただし、このポイントを読んでサッと理解できる人は少ないと思います。このポイントのうち、大事な点は2つあります。詳しく解説していきましょう。

f'(x)=0を解いて、α、βを調べる

lecturer_avatar

まずは、 ①f(x)が極値をもつときのxの値 を調べにいきます。

lecturer_avatar

3次関数f(x)=ax3+bx2+cx+dを微分します。f'(x)は2次式になりますね。 f'(x)=0が異なる2解α、β(α<β)をもつ とき、 f(x)の極値は、f(α)とf(β)になります ね。

lecturer_avatar

ただし、ここではまだ、 f(α)、f(β)のどちらが極大値で、どちらが極小値か はわからないわけです。

「a>0かa<0か」でグラフの形がわかる

lecturer_avatar

次に見極めるポイントは、 ②x3の係数が+か-か です。 x3の係数が+か-か によって、グラフは次の2パターンにわかれます。

POINT
高校数学Ⅱ 微分法と積分法14 ポイント
lecturer_avatar

すなわち、「㋐a>0」ならば、「上がって、下がって、上がるグラフ」になります。α<βより、グラフで考えると x=αで極大値、x=βで極小値 をとることがわかりますね。

lecturer_avatar

そして、「㋑a<0」ならば、「下がって、上がって、下がるグラフ」になります。α<βより、グラフで考えると x=αで極小値、x=βで極大値 をとることがわかりますね。

POINT
高校数学Ⅱ 微分法と積分法14 ポイント
lecturer_avatar

このように3次関数f(x)のグラフは、まず ①f(x)が極値をもつときのxの値 を調べます。さらに、 ②x3の係数が+か-か で2パターンのグラフをかきわければよいのです。

lecturer_avatar

グラフの概形と極値がわかれば、最大値・最小値もすぐに求めることができます。実際に問題を解いていきましょう。

Asami
この授業の先生

浅見 尚 先生

センター試験数学から難関大理系数学まで幅広い著書もあり、現在は私立高等学校でも 受験数学を指導しており、大学受験数学のスペシャリストです。

極値をもつ3次関数のグラフと最大・最小
6
友達にシェアしよう!
Logo black
Register description
  • すべての授業の「要点まとめノート」「問題・解答」をPDF無料ダウンロードできる
  • 学校で使っている教科書にあわせて勉強できる
  • わからないところを質問できる

      会員登録をクリックまたはタップすると、利用規約・プライバシーポリシーに同意したものとみなします。